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As the size of object diminishes, the effect of adhesional forces grows stronger for
micro-manipulation and so. The capillary force generated by a liquid bridge can be
greater than both the capillary force generated by another bridge and the adhesional
force because the capillary force can be controlled by regulation of the liquid volume.
We propose a micro-manipulation method based on the regulation of liquid bridge
volume. A numerical investigation to estimate the capillary force from a given liquid
volume is also presented, and four phases of capillary force curves are obtained from
it. If an object is supported by two liquid bridges, we can predict which bridge collapse
by a stability analysis for the wide range of liquid volume using the force curve.

1. Introduction
In micro-manipulation, the influence of gravitational force is extremely small

compared to adhesional force. Thus, in order to perform reliable micro-manipulation,
we need to use a force that is both controllable and greater than the adhesional
force. Saito, Miyazaki & Sato (2002a) and Saito et al. (2002b) have analysed the
mechanical force required to slip and roll an object by considering the adhesional
effect, using a scanning electron microscope, and proposed a method of manipulation
using a needle shaped tool. If the required force is large and compressive, however,
their method might break a brittle object because of high stress imparted by the tool.
Takahashi et al. (2001) have evaluated the force generated by Coulomb interaction
and estimated the voltage required to detach an adhered particle. If the required
voltage is too large, Takahashi et al’s method might cause electric discharge and
melting of the object (see Saito, Himeno & Takahashi 2003). Tanikawa, Hashimoto
& Arai (1998) have picked/placed an object with a micro-hand and a micro-drop,
but they have not provided any analysis of the capillary force involved.

As shown by Tanikawa et al. (1998), the capillary force is large enough to detach
an adhered particle if the liquid has volume sufficiently smaller than that of the
particle. This indicates the possibility of controlling the capillary force by means of
regulation of the liquid volume. We propose a micro-manipulation method based
on this idea. Figure 1 shows our proposed procedure for micro-manipulation. (I) A
probe with a known volume of liquid is located above a spherical object on a
substrate. (II) The probe comes down to form a liquid bridge between the probe and
the object. Consequently, capillary force Fp is generated on the object. (III) The probe
is lifted up, and the object is picked up by means of the capillary force. (IV) The
probe is positioned above a target point on which a micro-drop has been applied.
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Figure 1. Schematic illustration of pick/placing procedure: (I) positioning, (II) lowering,
(III) picking up, (IV) positioning, (V) lowering, (VI) placing.

(V) The object held by the probe is lowered to form another liquid bridge between the
substrate and the object. Therefore, capillary force Fs is also generated on the object.
(VI) The probe is pulled up in order to collapse the probe–object liquid bridge. The
object is thus put on the substrate.

In this model, the probe–object liquid bridge must collapse before the object–
substrate bridge during the operations (V) and (VI). We investigate the conditions
of liquid bridge stability, and in particular the force required to collapse the liquid
bridge. The object can be picked/placed by controlling Fp and Fs.

The profile of the liquid bridge is usually calculated through the circle approxima-
tion (see Gao, Tian & Bhushan 1995; Israelachvili 1985; Pitois, Moucheront &
Chateau 2001) and the capillary force is estimated from the profile. The approximation
is only valid for sufficiently small volume of the liquid compared to the volume of
the object. Erle, Gillette & Dyson (1970) have shown the limit of stability as the
volume of a liquid bridge between two disks having a fixed separation is reduced.
Although a detailed analysis has been presented by Gillette & Dyson (1971) and
Gaudet, McKinley & Stone (1996) have given an analysis of bridge stability which is
similar to ours, they were not considering manipulation with liquids, and furthermore,
they did not take into account effects of contact angles because the inclination of
a meniscus can change freely at the edge of a disk. Orr, Scriven & Rivas (1975)
have solved the Laplace–Young equation analytically in terms of elliptic integrals,
but no direct solution for a given conserved value of the liquid volume can be
obtained from it. Zhang, Padgett & Basaran (1996) have presented the limit value
of bridge length between two solid disks that are separating at a constant velocity.
Padday et al. (1997) have found the liquid volume required for breakage of pendant
drops supported underneath by a solid endplate both numerically and experimentally.
Zhang et al. (1996) and Padday et al. (1997) take account of viscosity in discussing
the dynamic collapse of the liquid bridge; however, the statistical force required to
collapse a liquid bridge between two solids has not been clearly investigated so far.

In the present paper, a numerical investigation is presented and applied to evaluate
the force required to collapse a liquid bridge at a given value of the liquid volume
based on Orr et al.’s work. The force required can be calculated for a wide range of
liquid volume. Capillary force curves are obtained and the stability of the liquid bridge
is discussed in terms of them. Although a numerical method is used, all the parameters
are normalized and a systematic evaluation is carried out. We propose a procedure
for a micro-manipulation scheme using capillary force controlled by regulating the
liquid volume. Note that we are not concerned here with any mechanical problems
of the liquid flow to the surface of the manipulation probe or substrate.
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Figure 2. Liquid bridge between a spherical object and a plate.

2. Analysis of the liquid bridge
2.1. Geometrical properties

Figure 2 shows a model for the analysis of a liquid bridge between a spherical object
and the plate of a probe or a substrate, where R is the radius of the object, D is
the distance from the plate to the object, ϕ is the filling angle of the object, F is the
attractive force acting on the object, and V is the volume of the liquid between two
solids. The meniscus forms contact angles θ1 at the object and θ2 at the plate. We
make the following assumptions. (i) The influence of gravity is negligible, i.e. the Bond
number (gL2�ρ/σ , where g is the local acceleration due to gravity, �ρ the density
difference between the fluids on either side of the interface, and L some characteristic
length for the system) is sufficiently small (see Orr et al. 1975). (ii) The dynamic flow
of the liquid is negligible. (iii) The volume of the liquid is conserved. (iv) The contact
angles are determined by Young’s equation (see Israelachvili 1985). (v) The object
and the plate are rigid. (vi) The area of the plate is infinite.

The stability profile of the liquid bridge can be obtained from Young–Laplace
equation (see Orr et al. 1975), which relates the hydrostatic pressure difference to the
local mean curvature H and surface tension σ :

�P = 2Hσ, (2.1)

where �P is the pressure difference between inside and outside the liquid. Since �P

is a constant, the surface of the meniscus has the same mean curvature at any local
point. The value of H in (2.1) can be expressed with geometrical parameters as

2H =
d2Z/dX2

[1 + (dZ/dX)2]3/2
+

dZ/dX

X[1 + (dZ/dX)2]1/2
, (2.2)

where X and Z are cylindrical coordinates in figure 2, i.e. the surface profile of the
meniscus. The first term is meridional curvature and the second term is azimuthal
curvature of the meniscus surface. With the following normalization:

z =
Z

R
, x =

X

R
, d =

D

R
, f =

F

πRσ
, v =

V

R3
, (2.3)
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Normalized mean Parameter c Meridional Sign
curvature curvature

2HR< 0 + −

0 < 2HR <
2 sin ε1

x1

− + +

0 < 2HR <
2 sin ε1

x1

− − −

2 sin ε1

x1

< 2HR + +

Table 1. The choice of signs in (2.6) and (2.7).

(2.2) can be written as

2HR =
d(sin ε)

dx
+

sin ε

x
, (2.4)

where ε is the angle between the normal to the meniscus and the vertical axis.
Since the left-hand side of this equation is constant, it can be solved as a two-point
boundary-value problem, for which the boundary conditions are the inclinations of
the menisci on the solid surfaces. These inclinations are determined by the slopes of
the solid surfaces and the respective contact angles θ1 and θ2 (see figure 2). Thus, the
boundary conditions are expressed by

ε1 = θ1 + ϕ, z1 = d + 1 − cos ϕ, x1 = sin ϕ,

ε2 = π − θ2, z2 = 0.

}
(2.5)

The boundary-value problem has the solution (see Orr et al. 1975)

x =
sin ε ∓ (sin2 ε + c)1/2

2HR
, (2.6)

z =

∫ ε

ε2

(sin2 ε + c)1/2 ∓ sin ε

2HR(sin2 ε + c)1/2
sin ε dε, (2.7)

where c is a constant parameter defined as

c ≡ (2HR)2x2
1 − 2(2HR)x1 sin ε1. (2.8)

The choice of signs in (2.6) and (2.7) is determined by the value of the normalized
mean curvature 2HR, the parameter c, and the meridional curvature (see table 1).

Then, the normalized liquid volume v and the normalized distance d can be
described in terms of the integral of ε:

v =

∫ z1

z2

πx2 dz =

∫ ε1

ε2

πx2 dz

dε
dε (2.9)

and

d = z1 − (1 − cos ϕ). (2.10)

2.2. Capillary force

The static attractive force due to the meniscus is the sum of the pressure difference
and the axial component of the surface tension acting on the object (see Orr et al.
1975):

F = 2πRσ [sin ϕ sin(θ1 + ϕ) − HR sin2 ϕ]. (2.11)
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Figure 3. Capillary force curves (θ1 = θ2 = 60◦): (i) v =0.1, (ii) v = 1.0, (iii) v = 50.0,
(iv) v = 100.0.
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Figure 4. Schematic illustration of the liquid profile and the definition of the distance d , the
capillary force f , and the external force fex: (a) the object is fully covered with the liquid;
(b) the liquid bridge; (c) after collapse of the liquid bridge.

From (2.3), the normalized capillary force can be obtained as

f = 2[sinϕ sin(θ1 + ϕ) − HR sin2 ϕ]. (2.12)

3. Capillary force curve
3.1. Phases of the force curve

The solid lines in figure 3 show the capillary force f as a function of the distance d

for different values of v and θ1 = θ2 = 60◦. The broken lines obtained from (2.4), (2.10),
and (2.12) are the imaginary solution of the present problem. Each curve exhibits the
different features of the liquid bridge: (i) The capillary force is always attractive, and
the value of f decreases with d . (ii) The capillary force is always attractive, and f

has a maximum value. (iii) The capillary force is repulsive for d = 0, and f has a
maximum value, and is zero at a certain point. (iv) The liquid bridge cannot exist for
d = 0. In this case, the object is fully covered with the liquid, as shown in figure 4(a).
The capillary force is repulsive for the minimum d , and f reaches a minimum and
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then increases with d until reaching a maximum value. The value of f is zero at
a certain point. When f = 0, the object floats on the liquid; such floating can be
observed in cases (iii) and (iv).

3.2. Stability of the liquid bridge

The liquid bridge is treated as static. Thus the capillary force curve is just plotted
in its stable equilibrium state, and indicates the range of distances where the liquid
bridge can exist statically, and also shows the value of the external force fex that
would equilibrate the capillary force (see figure 4b). If the distance d is above the
range of the curve, the liquid bridge cannot exist as in figure 4(b) and it must collapse
as in figure 4(c). If the distance d is below the range of the curve, figure 4(b) does
not apply and the object is fully covered with liquid as in figure 4(a). If the force fex

is larger than the maximum value of the curve, the liquid bridge is extended until
eventually the bridge collapses (see Padday et al. 1997).

3.3. Application to micro-manipulation

In the micro-manipulation method, Fp and Fs are acting on the object. In order to
keep a stable equilibrium, fp(≡ Fp/πRσ ) must be equal to fs(≡ Fs/πRσ ). If fp is
greater than fs, the object is attracted to the probe and tends to maintain the stability
of the bridge; however, if fp is greater than the maximum value of fs, the bridge on the
substrate can be elongated and collapse. Therefore, we can predict which liquid bridge
will collapse: if the maximum value of fp is larger than fs, the object–substrate
bridge must collapse; if the maximum value of fs is larger than fp, the probe–object
bridge must collapse.

Figure 5 shows the dependence of the maximum capillary force fmax on the liquid
volume v for θ = θ1 = θ2. The solid lines represent the control of the maximum
capillary force by the regulation of the liquid volume. The dashed lines show the
thresholds of the phases of the force curve.

3.4. Comparison to adhesional force

The adhesional effect must be taken account in the micro-manipulation. The
adhesional force Fadh. is expressed as

Fadh. = 3
2
πR�γ, (3.1)

where �γ is the work required for adhesion of interface between two solids (see
Johnson et al. 1971). It can be normalized as

fadh. =
Fadh.

πRσ
. (3.2)

If the normalized capillary force f is greater than 3
2
�γ/σ , the object can be removed

from the substrate.

4. Manipulation procedure
4.1. Picking procedure

In order to pick up the object during the manipulation, (II) and (III) in figure 1, Fp

must be greater than Fadh.. If �γ = 0.1 N m−1 and the liquid is water (σ = 0.072), the
normalized adhesional force fadh. is 2.08. The liquid volume on the probe vp must
be regulated in order to exceed the adhesional force. Figures 6(a) and 7(a) show
examples of how to determine the liquid volume on the probe vp. The capillary force
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Figure 5. Relation between the liquid volume and the maximum capillary force (solid lines),
and the threshold for the phases of the force curve (f = F/πRσ , v = V/R3) (dashed lines), for
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liquid bridge cannot exist for d =0.
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Figure 6. Determination of liquid volume vp and vs required in order to manipulate the
object (θ = 30◦): (a) pick; (b) place.
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Figure 7. Determination of liquid volumes vp and vs required in order to manipulate the
object (θ =80◦): (a) pick; (b) place.

fp should be set to be greater than the adhesional force fadh.. The liquid volume vp

required for the picking manipulation can be obtained from these diagrams.

4.2. Placing procedure

If the phase of the force curve is (i) or (ii) in figure 5 in terms of the probe–object
liquid bridge, the adhesional force acts on the object. In this case, in order to simplify
the discussion, we assume that solid–solid contact occurs at both the probe–object
and the object–substrate interface. Then, the adhesional forces acting on both sides
of the object can be cancelled. Thus, successful manipulation depends just on the
difference between fp and fs. Furthermore, the adhesional force is expected to be
negligible when the contact point is covered with the liquid, from Dupre’s equation
(see Israelachvili 1985). In cases (iii) and (iv), because the object floats, no adhesional
force acts on the object. Thus, in all cases, the placing manipulation is discussed in
terms of the difference between the capillary forces.

For the placing manipulation, the probe–object bridge must collapse. Thus we need
to regulate the liquid volumes vp and vs so that the maximum value of fs is greater
than that of fp.

Figures 6(b) and 7(b) show examples of how to determine the liquid volume on the
probe vp and on the substrate vs. The capillary force fs must be set to be greater
than fp. The liquid volumes vp and vs required for the placing manipulation can be
obtained from these diagrams.

4.3. Effect of contact angles

There are two differences between figures 6 and 7. The first is the volume required.
The maximum force fmax decreases with v in figure 6, and it increases with v in figure
7. Thus, in the placing procedure, vp should be greater than vs for small contact
angles and it should be smaller than vs for large contact angles. The second is the
phase of the capillary force curve. If the phase is (i) or (ii) as shown in figure 6,
the capillary force is always attractive. Thus the object must form a solid–solid
contact at the probe–object and/or the object–substrate interface. If the phase is (iii)
or (iv) as shown in figure 7, the bridge has a length at which the capillary force
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is zero, i.e. the object floats. Therefore the probe can approach the object without
causing mechanical damage. This indicates a great advantage of our method, because
conventional methods for micro-manipulation can impart large stress to the object
giving the possibility of damage.

5. Conclusion
A scheme for micro-manipulation based on the capillary force has been presented

in terms of the regulation of liquid volume. The stability of the liquid bridge has
been discussed in terms of the capillary force curve to collapse the liquid bridge. A
numerical method to plot the force curve and its four phases have also been presented.
The bridge can collapse due to the applied force being greater than the maximum
capillary force. Smaller contact angle and liquid volume generate greater capillary
force. For the manipulation, a mechanism that is able to supply small amounts of
liquid needs to be developed.

The authors would like to express their sincere gratitude to Dr M. Urago for his
kind and helpful discussion about the stability of the liquid bridge. This study was
supported by a Grant-in-Aid for Scientific Research from the Ministry of Education,
Culture, Sports, Science, and Technology.
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